RESEARCH ARTICLE

The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals

Daniel Ferreira¹ Oskar Hansson² | José Barroso³ | Yaiza Molina^{3,4} | Alejandra Machado³ | Juan Andrés Hernández-Cabrera³ | J-Sebastian Muehlboeck¹ | Erik Stomrud² | Katarina Nägga² | Olof Lindberg^{1,2} | David Ames^{5,6} | Grégoria Kalpouzos⁷ | Laura Fratiglioni^{7,8} | Lars Bäckman^{7,8} | Caroline Graff^{9,10} | Patrizia Mecocci¹¹ | Bruno Vellas¹² | Magda Tsolaki¹³ | Iwona Kłoszewska¹⁴ | Hilkka Soininen¹⁵ | Simon Lovestone¹⁶ | Håkan Ahlström¹⁷ | Lars Lind¹⁸ | Elna-Marie Larsson¹⁷ | Lars-Olof Wahlund¹ | Andrew Simmons^{1,19,20,21} | Eric Westman^{1,21} and for the AddNeuroMed consortium, for the Alzheimer's Disease Neuroimaging Initiative (ADNI)* for the Australian Imaging Biomarkers and Lifestyle Study of Ageing (AIBL) research group[†]

¹Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm 14157, Sweden

²Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Malmö 20502, Sweden

- ³Department of Clinical Psychology, Psychobiology and Methodology, University of La Laguna, La Laguna 38071, Spain
- ⁴Faculty of Health Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- ⁵National Ageing Research Institute, Parkville, Victoria 3050, Australia
- ⁶University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Kew, Victoria 3101, Australia
- ⁷Aging Research Center (ARC), Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 113 30 Stockholm, Sweden ⁸Stockholm Gerontology Research Centre, Stockholm 11330, Sweden
- ⁹Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Centre for Alzheimer Research, Karolinska Institutet, Stockholm 14157, Sweden
- ¹⁰Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm 14186, Sweden
- ¹¹Institute of Gerontology and Geriatrics, University of Perugia, Perugia 06100, Italy
- ¹²INSERM U 558, University of Toulouse, Toulouse 31024, France
- ¹³3rd Department of Neurology, Aristoteleion Panepistimeion Thessalonikis, Thessaloniki 54124, Greece
- ¹⁴Medical University of Lodz, Lodz 92216, Poland
- ¹⁵University of Eastern Finland and Kuopio University Hospital, Kuopio 70211, Finland
- ¹⁶Department of Psychiatry, Warneford Hospital University of Oxford, Oxford OX37JX, United Kingdom
- ¹⁷Department of Surgical Sciences, Radiology, Uppsala University, Uppsala 75185, Sweden
- ¹⁸Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden

*Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

[†]A complete list of the AIBL research group is available at https://aibl.csiro.au/about/aibl-research-team/

⁶⁵⁴ WILEY

¹⁹NIHR Biomedical Research Centre for Mental Health, London SE58AF, United Kingdom

²⁰NIHR Biomedical Research Unit for Dementia, London SE58AF, United Kingdom

²¹Institute of Psychiatry, King's College London, London SE58AF, United Kingdom

Correspondence

Daniel Ferreira, Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum, Plan 5, 14157 Stockholm, Sweden. Email: daniel.ferreira.padilla@ki.se

Abstract

Alzheimer's disease is characterized by hippocampal atrophy. Other factors also influence the hippocampal volume, but their interactive effect has not been investigated before in cognitively healthy individuals. The aim of this study is to evaluate the interactive effect of key demographic and clinical factors on hippocampal volume, in contrast to previous studies frequently investigating these factors in a separate manner. Also, to investigate how comparable the control groups from ADNI, AIBL, and AddNeuroMed are with five population-based cohorts. In this study, 1958 participants were included (100 AddNeuroMed, 226 ADNI, 155 AIBL, 59 BRC, 295 GENIC, 279 BioFiNDER, 398 PIVUS, and 446 SNAC-K). ANOVA and random forest were used for testing between-cohort differences in demographic-clinical variables. Multiple regression was used to study the influence of demographic-clinical variables on hippocampal volume. ANCOVA was used to analyze whether between-cohort differences in demographic-clinical variables explained between-cohort differences in hippocampal volume. Age and global brain atrophy were the most important variables in explaining variability in hippocampal volume. These variables were not only important themselves but also in interaction with gender, education, MMSE, and total intracranial volume. AddNeuroMed, ADNI, and AIBL differed from the population-based cohorts in several demographic-clinical variables that had a significant effect on hippocampal volume. Variability in hippocampal volume in individuals with normal cognition is high. Differences that previously tended to be related to disease mechanisms could also be partly explained by demographic and clinical factors independent from the disease. Furthermore, cognitively normal individuals especially from ADNI and AIBL are not representative of the general population. These findings may have important implications for future research and clinical trials, translating imaging biomarkers to the general population, and validating current diagnostic criteria for Alzheimer's disease and predementia stages.

KEYWORDS

aging, Alzheimer's disease, hippocampal volume, magnetic resonance imaging, multicohort

1 | INTRODUCTION

Hippocampal atrophy has become a well-established biomarker of Alzheimer's disease (AD) (Frisoni, Fox, Jack, Scheltens, & Thompson, 2010; Morris et al., 2014). Factors such as age, gender, education, global brain atrophy, intracranial volume, and APOE ϵ 4 genotype are known to influence hippocampal volume (Crivello et al., 2010; Janowitz et al., 2014; Jiang et al., 2014; Morra et al., 2009; Noble et al., 2012; Raz, Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010; Shpanskaya et al., 2014; Striepens et al., 2011; Voevodskaya et al., 2014; Yamaguchi et al., 2002; Yuefeng et al., 2014). However, other studies have failed to show an effect of these factors on hippocampal volume (Janowitz et al., 2014; Jiang et al., 2014; Morra et al., 2009; Shpanskaya et al., 2014; Striepens et al., 2011; Yamaguchi et al., 2002; Yuefeng et al., 2014). An explanation for these conflicting results is that all previous studies have focused on one or a few of these factors at a time. The interactive influence of all these factors on hippocampal volume in the same study and sample has not previously been investigated.

A substantial number of the publications on hippocampal atrophy comes from three large multi-center cohorts, that is, ADNI (Mueller

et al., 2005), AIBL (Ellis et al., 2010), and AddNeuroMed (Lovestone et al., 2009). However, specific recruiting procedures led to the collection of highly selected samples. In consequence, these cohorts have a higher prevalence of individuals with family history of dementia, participants are younger, more educated, and have better global cognitive status than that reported in the general population (Brodaty et al., 2014; Whitwell et al., 2012). Nonetheless, studies comparing ADNI, AIBL, and AddNeuroMed versus population-based samples are scarce and have mainly focused on the MCI and AD groups. Therefore, it is still unclear to what extent control groups from ADNI, AIBL, and Add-NeuroMed are representative of the general population and whether results are generalizable.

The first aim of this study was to investigate the simultaneous effect of several demographic and clinical factors on hippocampal volume in healthy individuals. To that end, we combined eight large-scale international cohorts, leading to the largest sample to date in a study of this kind. The second aim was to investigate how comparable the control groups from ADNI, AIBL, and AddNeuroMed are with population-based cohorts. To ascertain this is critical and may have important implications, as most of the results coming from ADNI, AIBL, and

AddNeuroMed directly depend on the characteristics of the control group. A specific question was whether between-cohort differences in hippocampal volume could be successfully minimized by statistical control of key demographic and clinical factors.

2 | MATERIALS AND METHODS

2.1 | Participants

This study includes a total of 1958 cognitively normal individuals from the following eight large-scale international cohorts: AddNeuromed (http://www.innomed-addneuromed.com/, RRID:SCR_003819), ADNI (http://adni.loni.usc.edu/, RRID:SCR_003007), and AIBL (https://aibl. csiro.au/) (multicenter cohorts), and BioFINDER, BRC, GENIC, PIVUS, and SNAC-K (single-center population-based cohorts). Cohorts' characteristics and eligibility criteria are displayed in Tables 1 and 2. Approval was obtained from local ethics committees. Data collection was carried out in accordance with relevant regulations at each center and participants gave written consent in accordance with the Declaration of Helsinki.

2.2 Demographic and clinical variables

Age, gender, education, and handedness were selected as demographic variables. Clinical information included the mini-mental state examination (MMSE), clinical dementia rating (CDR) scale, and several instruments for assessing depressive symptomatology and functional activity (Table 3). Subjective memory complaints were operationalized as detailed in Table 2. Cerebrospinal fluid (CSF) levels of A β_{42} , total tau (*T*-tau), and phosphorylated tau (*p*-tau) were also measured in ADNI and BioFINDER (Supporting Information Table 1a).

2.3 | Magnetic resonance imaging

High-resolution 3D T1-weighted sequences were acquired in all the cohorts. MRI scanner and acquisition parameters are detailed in Supporting Information Table 1b. Image processing was performed with FreeSurfer 5.1.0 (http://surfer.nmr.mgh.harvard.edu/, RRID:SCR_00 1847) using TheHiveDB database system (Muehlboeck, Westman, & Simmons, 2014). FreeSurfer provides measurements of cortical and subcortical volumes, as well as an estimation of the total intracranial volume (TIV) (Desikan et al., 2006; Fischl et al., 2002). Left and right hippocampal volumes were summed together. The brain volume (BV)/ CSF index was also calculated as a proxy of global brain atrophy using the following formula: brain volume (BV)/CSF index = (total grev matter volume + total white matter volume)/total CSF volume. This index correlates with clinical measures, CSF biomarkers, and cognition, and has been proposed for staging individuals according to the degree of global brain atrophy and for monitoring disease progression (Orellana et al., 2016). Lower values of the BV/CSF index denote more atrophy.

2.4 | Statistical analyses

One-way independent ANOVA and ANCOVA were performed to test between-cohort differences. All p-values (two-sided) were adjusted using Bonferroni correction for multiple comparisons across both dependent variables and post hoc paired comparisons. The Spearman's rank correlation was used to investigate relationships between variables. Multiple linear regression was performed to analyze the influence of demographic and clinical variables on hippocampal volume. Random forest analysis and dominance analysis were performed to investigate the importance of the demographic and clinical variables in explaining differences between cohorts as well as variability in hippocampal volume, respectively (Breiman, 2001; Grömping, 2007; Liaw & Wiener, 2002). Importance is reported as i and reflects the relative error in classification when a predictor is excluded from the model (in random forest analysis) (Breiman, 2001; Liaw & Wiener, 2002), and the relative percentage of the variance of the regression model explained by a given predictor (in dominance analysis, multiple linear regression) (Grömping, 2007). The statistical design used for each of the analyses performed is detailed in Supporting Information Table 2. Effect sizes are reported as partial eta squared (η_{par}^2) and standardized beta (β). Results were considered significant when $p \leq .05$.

3 | RESULTS

3.1 Between-cohort differences in demographic and clinical variables

Significant between-cohort differences were found in all the studied variables (Table 3). Age, memory complaints, depressive symptoms, and the BV/CSF index showed the greatest effect sizes ($\eta_{par}^2 \ge 0.30$). Random forest analysis demonstrated that age was the most important variable in explaining differences between cohorts (i = 526.3), followed by education level (i = 190.4), TIV (i = 148.3), the BV/CSF index (i = 143.6), MMSE (i = 77.3), and gender (i = 64.4). ADNI and AddNeuroMed recruited significantly older samples as compared with AIBL and most of the population-based cohorts. Both ADNI and AlBL recruited highly educated individuals, while AddNeuroMed was comparable to the population-based cohorts. BRC and GENIC showed the smallest TIV values while ADNI, BioFINDER, and PIVUS showed the largest TIV values. Finally, the BV/CSF index had higher values (i.e., less atrophy) in the cohorts AIBL, GENIC, and SNAC-K. Lower values of the BV/CSF index (i.e., more atrophy) were observed in AddNeuroMed and PIVUS.

3.2 | Between-cohort differences in hippocampal volume

Hippocampal volume was significantly larger in AIBL than in AddNeuroMed and ADNI, and was comparable with that displayed by GENIC and SNAC-K. BRC and PIVUS were the cohorts with smallest hippocampal volume, and BioFINDER was in between (Table 3 and Figure 1).

TABLE 1 Descriptio	n of cohorts' characte	eristics						
	AddNeuroMed	ADNI	AIBL	BRC	GENIC	BioFINDER	PIVUS	SNAC-K
Full name	I	Alzheimer's disease neuroimaging initiative	Australian imaging biomarkers and lifestyle study	King's health partners biomedical research center for mental health dementia cohort	Group of neuropsychological studies from the Canary islands	Swedish BioFIN- DER study	Prospective investigation of the vasculature in Uppsala seniors	Swedish national study on aging and care in Kungsholmen
Type	Multicenter Case-control (AD, MCI, CTRL)	Multicenter Case-control (AD, MCI, CTRL)	Multicenter Case-control (AD, MCI, CTRL)	Single-center Population-based specifically including AD, MCI, and CTRL groups	Single-center Population-based specifically including MCI and CTRL groups	Single-center Population based	Single-center Population based	Single-center Population based
Country	Finland, France, Greece, Italy, Poland, and UK	USA and Canada	Australia	UK (London)	Spain (Canary Islands)	Sweden (Malmö)	Sweden (Uppsala)	Sweden (Stockholm)
Design	Prospective longitudinal	Prospective longitudinal	Prospective longitudinal	Prospective longitudinal	Prospective longitudinal	Prospective longitudinal	Prospective longitudinal	Prospective longitudinal
Period	2004-present	2003-present	2006-present	2007-present	2005-present	2009-present	2001-present	2001-present
Brief project description	Cross European study, part of the InnoMed (Innovative Europe), funded by the European Union (FP6 and FP7), as well as members of the EFPIA. Designed to find biomarkers or tests for AD	Launched by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administra- tion, private pharmaceutical companies, and nonprofit companies, and nonprofit nonprofit companies, and nonprofit companies, and nonprofit companies and biomarker profices and biomarker profices and biomarker profices and biomarker procedures in AD research	Launched by the Australian CSIRO and a number of leading Australian research organizations. A study to discover which biomarkers, cognitive charateristics, and health and lifestyle factors determine subsequent development of symptomatic AD	BRC is a neuroimaging study which was designed to establish imaging markers for the earlier detection and diagnosis of AD. Data were collected at the Institute of Psychology and Neuroscience (IoPPN), King's College London and South London and South London MHS Foundaley NHS Foundalion Trust. London, UK	Study from the University of La Laguna, aimed to investigate the cognitive and imaging profile associated to normal aging from the middle- age adulthood to the old age. Individuals living in the Canary Islands	Study from Lund University, aimed to investigate the preclinical stages of Alzheimer's disease and other dementia disorders. Further aims are to study midlife risk factors for future development of amyloid, tau, and vascular pathologies	Study from the University of Uppsala, aimed to investigate the predictive power of different measurements of endothelial function and arterial compliance in a random sample of 1,000 normal elderly in the community of Uppsala	Carried out by the Stockholm Gerontology Research Centre, the ARC at Karolinska Institutet and the Stockholm University, to detect the influence of lifetime genetic, environmental and biological factors on medical, psychological, and social health in late adulthood. In the area of Kungsholmen/ Essingeöarna

⁶⁵⁶ WILEY-

(continues)

	AddNeuroMed	ADNI	AIBL	BRC	GENIC	BioFINDER	PIVUS	SNAC-K
Recruitment procedure	Nonrelated members of the patient's families, caregiver's relatives and social centers for the elderly or GP surgeries	Advertisements in newspapers	Medial appeal and through participants' treating physicians	Nonrelated members of the patient's families, caregivers, relatives and social centers for the elderly, GP surgeries or advertisements in newspapers	Relatives and acquaintances of the research staff and students from the University of La Laguna, personnel from local schools, and through participants' GPs	Random sampling from the cardiovascular cohort of the population-based Malmö Diet and Cancer Study conducted in the city of Malmö, Sweden	Random sample of 1,000 subjects aged 70 years old at baseline and chosen from the register of community living	Random epidemiological sample
Data obtained from	Eric Westman and Andrew Simmons are part of AddNeuroMed	https://ida.loni. usc.edu, Pl Michael M. Weiner	https://ida.loni. usc.edu and https://aibl.csiro. au (Eol), PI David Ames	Personal contact to PI Simon Lovestone and Andy Simmons	Personal contact to PI José Barroso	Personal contact to PI Oskar Hansson	Personal contact to PI Lars Lind	Personal contact to PI Laura Fratiglioni
Key references, other sources	Lovestone et al. (2009) www.innomed- addneuromed. com	Mueller et al. (2005) www.adni-info. org	Ellis et al. (2009) www.aibl.csiro.au	I	Ferreira et al. (2015)	www.biofinder.se	Lind et al. (2005) www.medsci.uu. se/pivus	Zhang et al. (2010) www.snac-k.se
AD = Alzheimer's dises tions; USA = United St	ase; MCI = mild cognitiv ates of America; PI = p	ive impairment; CTRL = principal investigator; CS	control; UK = United K SIRO = Commonwealth	ingdom; FP = Framew Scientific Industrial an	ork Programme; EFPIA = Ei d Research Organization; E	uropean Federation for col = Expression of Inte	Pharmaceutical Industr rest; ARC = Aging Rese	ies and Associa- arch Centre.

TABLE 1 (continued)

	PIVUS SNAC-K		All individuals are 70 \geq 60 years years old at baseline (Data at 5 years follow-up when MRI is collected is included in this study)	- 24-30ª it)	I	inical - No clinical sive diagnosis of depression (DSM-IV, ICD-10)	Normal elderly Nondemented individuals individuals atus	- A percentage of tl participants expressed expressed subjective memory function. Subjective memory ere elicited by the question: "Do you think your memory has got
	BioFINDER		≥60 years	28–30 (at screening visi	0	No current cli major depres o episode t	Preserved cognitive and functional sta	of No memory ts complaints as from those common to o normal subjective memory complaints w elicited by th elicited by th elicited by th enere you have problems with memory or th thinking?"
	GENIC		≥35 years	24-30	I	No clinical diagnosis of depression, no antidepressan drugs	Preserved cognitive and functional stat	of A percentage the participan expressed subjective concern abour functions. ity. Subjective memory re elicited by the question: "Do you have difficulties wit your memory
	BRC		≥60 years	24-30	0	$GDS \leq 5$	ral Preserved cognitive and functional stat	A percentage (the participant expressed subjective concern about their memory function or thinking capaci Subjective e memory complaints we e complaints we e dicited by the question: "Do you have problems with memory or
	AIBL		≥60 years	24-30	0 or 0.5	$GDS \leq 5$	Generally, norm education- adjusted performance in Logical Memory (WMS-R), (WMS-R), (WMS-R), although some participants demonstrating failure were further investigated an	A percentage o the participants expressed ar subjective concern about their memory function. Subjective memory complaints wer elicited by the question: "Do you have difficulties with your memory."
	ADNI		55-90 years	24-30 (exceptions for subjects with <8 years of education)	0	$GDS \leq 5$	Normal education- adjusted performance in Logical Memory (WMS-R)	No memory complaints aside from those common to othe normal subjects
oility criteria	AddNeuroMed	ק	≥65 years	24-30	0	GDS ≤ 5	Preserved cognitive and functional status	A percentage of the participants expressed subjective concern about their memory function or thinking capacity. Subjective memory you have problems with memory or
TABLE2 Eligit		Inclusion criteri.	Age	MMSE	CDR	Depression	Cognition	Subjective complaints

⁶⁵⁸ WILEY

TABLE 2 (continued	1)							
	AddNeuroMed	ADNI	AIBL	BRC	GENIC	BioFINDER	PIVUS	SNAC-K
Functional activity	Absence of significant impairment in activities of daily living	Absence of significant impairment in activities of daily living	Intact social and occupational functioning	Absence of significant impairment in activities of daily living	$FAQ \leq 5$	Absence of significant impairment in activities of daily living	Normal elderly subjects	Nondemented, non- institutionalized, and nondisabled
Medication	Stable medication	Stable medication	I	Stable medication	I	Stable medication	I	I
Health	Good general health	Good general health	1	Good general health	Good general health	Good general health	Vascular comorbidity and vascular risk factors are not excluded	Healthy elderly people
Exclusion criteria								
Cognitive impairment	Dementia (DSM-IV criteria), MCI	Dementia (DSM- IV criteria), MCI	Dementia (DSM- IV and ICD-10 criteria), MCI (Winblad et al., 2004)	Dementia (DSM- IV criteria), MCI	Dementia (DSM- IV criteria), MCI (Winblad et al., 2004)	Dementia (DSM-IV and ICD-10 criteria), MCI (Winblad et al., 2004)	1	Dementia (DSM-IV criteria)
Disease	Significant neuro- logical or psychia- tric iliness, significant un- stable systemic illness, or organ failure	Significant neuro- logical or psychia- tric iliness, significant un- stable systemic illness, or organ failure	Significant neuro- logical or psychia- tric illness, cancer (except basal cell skin carcinoma), symptomatic stroke, and un- controlled dia- betes	Significant neuro- logical or psychia- tric illness, significant un- stable systemic tillness, or organ failure	Significant neurological or psychiatric illness, significant systemic illness, or organ failure	Significant neurological or psychiatric illness, significant unstable systemic illness, or organ failure		Significant neurological or psychiatric illness, significant systemic illness or organ failure ^b
Medication	1	Current use of psychoactive medications or warfarin	1	1	Current use of psychoactive medications	Use of antipsychotic or sedative medications	1	1
Substance abuse	Alcohol or sub- stance misuse	History of alcohol or substance abuse or depen- dence	Current regular alcohol use ex- ceeding two stan- dard drinks per day for women or four per day for men	Alcohol or sub- stance misuse	History of alcohol or substance abuse or depen- dence	Current alcohol or substance misuse	T	Current alcohol or substance misuse ^b
ADNI = Alzheimer's C GENIC = Group of Ne Kungsholmen; MMSE and Stroke - the Alzh Memory Scale-Revisei ^a The SNAC-K is a por scores below 24. For ^b The SNAC-K is a por conditions associated were excluded becaus were excluded becaus	isease Neuroimaging I uropsychological Stud = Mini-Mental State E eimer's Disease and R« d edition; FAQ = Func ulation-based study th the purposes of this st ulation-based study th with cognitive impairm e of psychiatric disord quality.	nitiative; AIBL = Austriative; AIBL = Austriative; from the Canary Is examination; CDR = Cli exanct and the Conduct Assoctional Activity Questional Activity Questionat recruited healthy e tudy, selection criteria and recruited healthy end. For the purposes the $(n = 27)$, neurologic ler $($	alian Imaging Biomarke lands; PIVUS = Prospec inical Dementia Rating; liation; DSM-IV = Diagr nnaire; TIA = transitory Iderly people without of based on previous SN Iderly people without of i of this study, selection al disease (<i>n</i> = 11), MM	rs and Lifestyle study: tive Investigation of t GDS = Geriatric Depi onotic and Statistical N ischemic attack. dementia living in the AC-K studies (Ferencz dementia living in the n criteria based on pre $\Lambda SE < 24$ ($n = 2$), and a	: BRC = King's Health the Vasculature in Upp ression Scale; NINCDS Annual of Mental Diso area of Kungsholmen/ et al. 2013; Qiu et al area of Kungsholmen/ svious SNAC-K studies licohol dependence syi	Partners Biomedical Re isala Seniors; SNAC-K -ADRDA = National In rders-Fourth edition; N Essingeöarna (Stockhol ., 2012: Wang et al., 2 Essingeöarna (Stockhol e (Ferencz et al., 2013) ndrome (n = 3). Moreo	search Centre for Mental = Swedish National Study stitute of Neurological and ACI = mild cognitive impaii m). Some participants turr 11, were applied. In particular were applied. In particular ver, 49 further participants	Health Dementia Cohort; on Aging and Care in d Communicative Disorders ment; WMS-R = Wechsler red out to have MMSE and out to have medical , the following participants s were excluded due to

TABLE 3 Demographic varia	bles, clinical variable	s, and hippocampa	al volume							
	AddNeuroMed	ADNI	AIBL	BRC	GENIC	BioFINDER	PIVUS	SNAC-K	d	η_{par}^2
Sample size, n	100	226	155	59	295	279	398	446	ı	I
Age, mean (SD)	74.2 (5.6)	76.0 (5.1)	72.8 (7.1)	77.2 (5.8)	54.2 (10.7)	73.2 (5.1)	75.0 (0.0)	70.2 (8.9)	<.001	0.52
Age, range	61-88	60-90	60-88	67-91	35-83	65-87	75	60-96	I	I
Gender, % female	57%	48%	52%	59%	54%	61%	47%	40%	.002	0.01
Education, years	10.1 (4.5)	16.1 (2.8)	I	13.0 (3.4)	I	11.9 (3.7)	I	12.5 (4.5)	<.001	0.17
Education, % high level ^a	52%	98%	93%	88%	58%	72%	43%	73%	<.001	0.15
MMSE, mean (SD)	29.0 (1.3)	29.1 (1.0)	28.7 (1.2)	29.1 (1.1)	28.8 (1.3)	29.0 (0.9)	28.7 (1.4)	29.1 (1.0)	<.001	0.03
MMSE, range	25-30	25-30	25-30	26-30	24-30	27-30	21-30	25-30	ı	I
Memory complaints, %	25%	I	56%	44%	27%	%0	I	72%	<.001	0.32
CDR, score (%)	0 (98%). 0.5 (2%)	0 (100%)	0 (94%). 0.5 (6%)	0 (100%)	I	0 (100%)	I	0 (0%)	<.001	0.04
Activities of daily living	ı	FAQ: 0.1 (0.6)	I	I	FAQ : 0.4 (0.8) ^c	I	I	I	<.001	0.03
	1	ı	I	I	I	1	I	KATZ : 0.0 (0.0)	I	I
Depressive symptomatology	GDS: 5.5 (1.1)	GDS: 0.9 (1.2)	GDS: 1.0 (1.3)	GDS: 1.7 (2.1)	GDS: 2.4 (2.2) ^d	I	I		<.001	0.43
	1	1	HADS: 2.6 (2.2)	1	ı	HADS: 2.0 (2.3)	I		.008	0.02
	I	I	I	I	ı	CSDD : 1.0 (2.3)	I		ı	I
	I	I	I	I	I	I	I	MADRS: 1.8 (2.6)		
Mild depression,% ^b	40%	%0	4% ^e	7%	10%	3% ^e	I	1%	<.001	0.17
APOE €4, % carriers	33%	27%	42%	33%	ı	29%	I	26%	.010	0.01
TIV, dm ³	1.48 (0.14)	1.53 (0.17)	1.53 (0.16)	1.46 (0.19)	1.46 (0.16)	1.56 (0.16)	1.55 (0.16)	1.52 (0.25)	<.001	0.03
Global brain atrophy	23.5 (11.1)	24.7 (11.5)	28.2 (12.8)	25.0 (10.6)	47.3 (19.2)	24.5 (10.7)	21.2 (8.5)	31.6 (14.1)	<.001	0.30
Hippocampal volume, mm ³	7013 (865)	7118 (888)	7492 (890)	6803 (903)	8244 (1036)	7133 (945)	6929 (764)	7504 (968)	<.001	0.19
ADNI = Alzheimer's Disease Ne Cohort; GENIC = Group of Neu Care in Kungsholmen; SD = stai KATZ = Katz Index of independ MADRS = Montgomery-Asberg ied as a provy of global brain at "Years of education was dichott sponds with 9 or more years of bClinical cut-offs used for detern 1983); and MADRS \geq 13 (Magni cFAQ in GENIC (11 items) was of dCDS values for 158 individuals	uroimaging Initiative, ropsychological Studie ndard deviation; MMS depression rating scal trophy. Hippocampal v pmized in high and low education, while low mining mild depressio il, Janmarker, Gunnars converted to the sam were estimated from	AIBL = Australian I as from the Canary is from the Canary is anith-mental sti aily living; GDS = g aily living; GDS = d (olume was calcular) (olume was cal	maging Biomarkers ar Islands, PIVUS = Pro ate examination; CDR eriatric depression score ipoprotein E allele e4; ipoprotein E allele e4; mparability between c corresponds with <9 inally proposed in the 2013; Svanborg and n ADNI (10 items) (co he following formula:	nd Lifestyle study: sepective Investiga a ∈ clinical dement ale; HADS = hosp and right sides. Bo and right sides. Bo cohorts providing ' vears of educatic e scales: GDS ≥ 6 Ekselius, 2003). noversion factor = BDL_to_GDS = (B	BRC = King's Healt tion of the Vasculat ia rating; ADL = act ital anxiety and dep ital anxiety and dem inferroni correction years of education $a_{\rm in}$. (Wancata, Alexandr 0.909). D1 z score × SD of	 h Partners Biomedic ure in Uppsala Senic ivities of daily living; ression scale; CSDD = cubic decimeters; for multiple compari for multiple compari and those only provio avicz, Marquart, We GDS) + mean of GD 	al Research Cel irs; SNAC-K = § FAQ = functio = Cornell scale mm ³ = cubic mi sons (p value \leq ding levels of e iss, & Friedrich S. SD and mea	itre for Mental Health wedish National Stud al activities question for depression in den Illimeters. The BV/CSF Illimeters. The BV/CSF 003). ducation. High level o 2006); HADS ≥ 8 (Zi of GDS were calcula	n Dementia Ny on Aging naire; nentia; F index was f education gmond & S ated from t	s stud- i corre- i corre- inaith,

660 | WILEY-

same population (N = 134). $\ensuremath{^{\text{e}}\text{Percentage}}$ obtained from the HADS scale.

FIGURE 1 Between-cohort differences in hippocampal volume. Hippocampal volume was calculated by summing left and right sides and values are expressed in cubic millimeters. Values represent median and confidence intervals. ADNI = Alzheimer's Disease Neuroimaging Initiative; AIBL = Australian Imaging Biomarkers and Lifestyle study; BRC = King's Health Partners Biomedical Research Centre for Mental Health Dementia Cohort; GENIC = Group of Neuropsychological Studies from the Canary Islands; PIVUS = Prospective Investigation of the Vasculature in Uppsala Seniors; SNAC-K = Swedish National Study on Aging and Care in Kungsholmen [Color figure can be viewed at wileyonlinelibrary.com]

(a) Importance				(b) Interactions			
Multiple regression $R^2 = 53\%; F_{(6, 1905)} =$	model: = 355.747; p <	< .001		Multiple regression model: $R^2 = 57\%; F_{(14, 1897)} = 180.710; p$	< .001		
Predictors (X)	В	р	i	Predictors (X)	Unstandardized beta	T value	р
Age	-0.363	<.001	22%	Age	-42.083	-20.135	<.001
BV/CSF index	0.384	<.001	18%	BV/CSF index	32.785	21.597	<.001
TIV	0.369	<.001	9%	TIV	0.002	20.417	<.001
Gender	0.056	.004	3%	Gender	99.756	2.663	.008
Education level	0.058	<.001	1%	Education level	71.363	2.090	.037
MMSE	0.055	<.001	1%	MMSE	34.486	2.543	.011
				${\rm BV/CSF} \text{ index} \times {\rm Age}$	0.975	11.307	<.001
				$BV/CSF \text{ index} \times Gender$	9.189	4.329	<.001
				$\mathrm{BV/CSF}$ index \times Education level	-6.735	-2.246	.025
				Age $ imes$ MMSE	3.802	2.921	.004
				Age $ imes$ Education level	-13.147	-2.967	.003
				Gender $ imes$ Education level	192.786	2.398	.017
				$Gender\timesTIV$	0.001	2.056	.040
				Education level \times TIV	-0.001	-2.715	.007

TABLE 4 Effect of demographic and clinical variables on hippocampal volume (whole sample)

i = importance from dominance analysis in multiple linear regression. It reflects the relative percentage of the variance of the regression model explained by a given predictor; TIV = total intracranial volume; MMSE = Mini-Mental State Examination; Gender (0 female; 1 male); Education Level (0 low; 1 high). High level of education corresponds with 9 or more years of education, while low level of education corresponds with <9 years of education. All possible interactions among age, the BV/CSF index, TIV, gender, education level, and MMSE were tested. Only significant (p < .05) predictors and interactions are presented in the table. Predictors included in the models can be consulted at Supporting Information Table 4. The BV/CSF index was studied as a proxy of global brain atrophy.

FIGURE 2 Effect of demographic and clinical variables on hippocampal volume (whole sample): significant interaction between age and the BV/CSF index (multiple linear regression: interaction between the effects of global brain atrophy (i.e., BV/ CSF index) and age on hippocampal volume: unstandardized beta = 0.975; $t_{(1897)} = 11.307$; two-sided p < .001. N = 1912). Hippocampal volume was calculated by summing left and right sides. The BV/CSF index was studied as a proxy of global brain atrophy. Two groups were created by separating the upper bound of age (old) versus the lower bound of age (young). *y*-axis represents raw hippocampal volume in mm³ and *x*-axis represents mean centered values of the BV/CSF index [Color figure can be viewed at wileyonlinelibrary.com]

3.3 | Effect of demographic and clinical variables on hippocampal volume

Multiple regression analyses performed for the whole sample showed that age and the BV/CSF index were the most important variables in explaining variability in hippocampal volume (Table 4a). Age and the BV/CSF index correlated with each other (r = -.575; p < .001). More-

over, both variables were not only important themselves but also in interaction with gender, education, MMSE, and TIV (Table 4b). Figure 2 shows the interaction between age and the BV/CSF index (unstandardized beta = 0.975; $t_{(1897)} = 11.307$; p < .001): smaller hippocampal volume was associated with lower BV/CSF index (i.e., more atrophy) in the older participants, but not in the younger ones. We then repeated the same multiple regression model for each separate cohort, also including depressive symptoms as a predictor. The association between hippocampal volume and the different demographic and clinical variables was modulated by the cohort factor (Figure 3). Patterns of association were largely the same across cohorts. Age, the BV/CSF index, and TIV showed the largest standardized regression coefficients (absolute β > 0.20), although education, MMSE, and depressive symptoms also showed significant associations especially in the population-based cohorts (absolute $\beta = 0.08-0.12$). Finally, we performed new multiple regression models for each separate cohort, but this time including all the available demographic and clinical variables (predictors included on each model are specified in Supporting Information Table 2 "Extended model"). Results indicated similar patterns as above but three new variables showed significant association with hippocampal volume. Higher scores in the CDR, presence of the APOE ϵ 4 allele, and higher levels of CSF T-tau were significantly associated with smaller hippocampal volume ($\beta = -0.15$; $\beta = -0.17$; $\beta = -0.18$, respectively).

3.4 Between-cohort differences in hippocampal volume are largely explained by between-cohort differences in demographic and clinical variables

An ANCOVA was performed to test between-cohort differences in hippocampal volume when accounting for the effect of age, gender, education, MMSE, TIV, and the BV/CSF index. Results showed a

FIGURE 3 Effect of demographic and clinical variables on hippocampal volume (separately by cohorts). The figure schematizes the results from the multiple regression models (backwards) performed separately for the eight study cohorts. Only predictors remaining in the final models are displayed (criterion for excluding predictors from the models: two-sided p < .10). Predictors included in the original models as well as sample size can be consulted in Supporting Information Table 2. p Values of the primary regression models were adjusted using Bonferroni correction for multiple comparisons. Gender (0 female; 1 male); education level (0 low; 1 high). High level of education corresponds with 9 or more years of education, while low level of education corresponds with <9 years of education. Depression was measured with GDS (AddNeuroMed, ADNI, AIBL, BRC, and GENIC), HADS (BioFINDER), and MADRS (SNAC-K). The BV/CSF index was studied as a proxy of global brain atrophy. ADNI = Alzheimer's Disease Neuroimaging Initiative; AIBL = Australian Imaging Biomarkers and Lifestyle study; BRC = King's Health Partners Biomedical Research Centre for Mental Health Dementia Cohort; GENIC = Group of Neuropsychological Studies from the Canary Islands; PIVUS = Prospective Investigation of the Vasculature in Uppsala Seniors; SNAC-K = Swedish National Study on Aging and Care in Kungsholmen; MMSE = mini-mental state examination; TIV = total intracranial volume [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Attenuation of between-cohort differences in hippocampal volume when controlling for demographic and clinical variables (ANOVA: $F_{(7, 1904)} = 63.188$; two-sided p < .001; $\eta_{par}^2 = 19\%$; ANCOVA: $F_{(7, 1898)} = 4.429$; two-sided p < .001; $\eta_{par}^2 = 2\%$). The original ANOVA (N = 1958) was repeated for the same sample size than the ANCOVA (N = 1912) to allow perfect comparability of the results. Hippocampal volume was calculated by summing left and right sides and values are expressed in cubic millimeters. Covariates included in the ANCOVA model are age, gender (0 female; 1 male), education level (0 low; 1 high), MMSE, TIV, and the BV/CSF index. High level of education corresponds with 9 or more years of education, while low level of education corresponds with <9 years of education. The BV/CSF index was studied as a proxy of global brain atrophy. ADNI = Alzheimer's Disease Neuroimaging Initiative; AIBL = Australian Imaging Biomarkers and Lifestyle study; BRC = King's Health Partners Biomedical Research Centre for Mental Health Dementia Cohort; GENIC = Group of Neuropsychological Studies from the Canary Islands; PIVUS = Prospective Investigation of the Vasculature in Uppsala Seniors; SNAC-K = Swedish National Study on Aging and Care in Kungsholmen; MMSE = mini-mental state examination; TIV = total intracranial volume [Color figure can be viewed at wileyonlinelibrary.com]

dramatic reduction in the effect size from 19% in the original ANOVA for between-cohort differences in hippocampal volume ($F_{(7, 1904)} = 63.188$; p < .001) (Table 3) to 2% in this ANCOVA ($F_{(7, 1898)} = 4.429$; p < .001). Moreover, most post hoc comparisons became non-significant. AIBL and SNAC-K displayed the largest hippocampal volumes, significantly different from those found in BioFINDER and PIVUS. The effect sizes of the covariates showed that TIV ($\eta_{par}^2 = 15\%$), the BV/CSF index ($\eta_{par}^2 = 13\%$), and age ($\eta_{par}^2 = 9\%$), had the strongest confounding effect. Figure 4 shows how original between-cohort differences in hippocampal volume (blue line) are attenuated when controlling for the aforementioned covariates (orange line).

4 | DISCUSSION

In this study, age and global brain atrophy (i.e., BV/CSF index) were the most important variables in explaining variability in hippocampal volume, and were not only important themselves but also in interaction with gender, education, MMSE, and TIV. AddNeuroMed, ADNI, and AIBL differed from population-based cohorts in key demographic and clinical variables that were found to largely explain between-cohort differences in hippocampal volumes. Below we discuss several important implications of the findings as well as considerations for generalization of results from these highly selected samples to the general population.

Age was the most important variable in explaining differences between cohorts, followed by education level, TIV, and the BV/CSF index. Participants in ADNI and AddNeuroMed were older in comparison with AIBL and most of the population-based cohorts. This result is different from previous studies where the control groups from ADNI and AIBL were younger than those from the population-based cohorts of the Mayo Clinic Study of Aging (MCSA) and the Sydney Memory and Aging Study, respectively (Brodaty et al., 2014; Whitwell et al., 2012). Of note, because of the recent interest in studying the preclinical stage of AD (Sperling et al., 2011), as well as in conducting aging research from a lifespan perspective (Walhovd, Fjell, & Espeseth, 2014), especially focused on middle-age populations (Ferreira et al., 2015), there is a clear trend for contemporary aging studies to include younger cohorts than those of AddNeuroMed and ADNI.

As previously reported, education levels were found to be considerably higher in ADNI and AIBL compared to AddNeuroMed and most of the population-based cohorts (Brodaty et al., 2014; Whitwell et al., 2012). Education is one of the most frequently used proxies of cognitive reserve (Stern, 2009). Therefore, this finding has important implications as extensive evidence exist about the impact of cognitive reserve in both cognition and brain structure. It has previously been suggested that a large proportion of the ADNI controls could be on the path to AD dementia, although cognitive reserve mechanisms may have protected them from cognitive decline (Whitwell et al., 2012).

Regarding TIV, the cohorts of BRC and GENIC showed the smallest TIV values while ADNI, AIBL, BioFINDER, and PIVUS showed the largest. Whitwell et al. (2012) did not find significant differences in TIV between healthy individuals in ADNI and MCSA. Larger TIV has previously been related to higher brain reserve and protection against AD pathology (Stern, 2009; Whitwell, 2010). The fact that individuals in the ADNI cohort have larger TIV in combination with higher level of education is thus of interest. A recent study showed that larger TIV attenuated the impact of brain atrophy on clinical disease progression in the MCI patients from ADNI (Guo, Alexopoulos, Wagenpfeil, Kurz, & Perneczky, 2013).

The cohorts AIBL, GENIC, and SNAC-K had less brain atrophy (i.e., higher BV/CSF index) compared to AddNeuroMed and PIVUS. We are not aware of previous studies comparing the control groups from

⁶⁶⁴ WILEY-

AddNeuroMed, ADNI, or AIBL versus population-based cohorts in terms of global brain atrophy. When looking at other imaging markers, previous studies have reported higher rates of hippocampal atrophy (Whitwell et al., 2012), reduced cortical volume (Nettiksimmons et al., 2010), and unusually high amyloid load (Jagust et al., 2009) in the ADNI cohort. In AIBL, GENIC, and SNAC-K, less global brain atrophy (i.e., higher BV/CSF index) could be explained by the fact that these cohorts have the youngest participants. Low educational level, relatively old participants, and high prevalence of mild depression (40%) may explain why the subjects in AddNeuroMed and PIVUS had a lower BV/CSF index. Vascular comorbidity and vascular risk factors were also frequent in PIVUS (Lind, Fors, Hall, Marttala, & Stenborg, 2005). All these factors have previously been associated with brain atrophy (Janowitz et al., 2014; Jiang et al., 2014; Noble et al., 2012; Raz et al., 2010; Shpanskaya et al., 2014; Yuefeng et al., 2014).

We also found between-cohort differences in gender distribution, MMSE, CDR, presence of subjective memory complaints, depressive symptomatology, and APOE ϵ 4 distribution. The effect of these and the previously discussed factors of age, education, TIV, and global brain atrophy on hippocampal volume is widely known. However, limited research has focused on cognitively normal individuals (Crivello et al., 2010; Janowitz et al., 2014; Jiang et al., 2014; Morra et al., 2009; Noble et al., 2012; Raz et al., 2010; Shpanskaya et al., 2014; Striepens et al., 2011; Voevodskaya et al., 2014; Yamaguchi et al., 2002; Yuefeng et al., 2014), and negative results have also been reported (Janowitz et al., 2014; Jiang et al., 2014; Morra et al., 2009; Shpanskaya et al., 2014; Striepens et al., 2011; Yamaguchi et al., 2002; Yuefeng et al., 2014). An explanation for these conflicting results is that all previous studies have focused on one or a few of the factors at a time. Therefore, some of the missing factors could be exerting an unobserved confounding effect and partially drive the results.

Increasing evidence shows that some of these factors play a relevant role in disease progression [e.g., cognitive reserve (Sperling et al., 2011)], magnifying variability on rates of hippocampal decline along the stages of MCI and AD. Therefore, the influence of several key demographic and clinical factors on brain structure and disease progression may add something valuable to the explanation of different subtypes in AD.

The main contribution of this study is the demonstration that once all these factors are simultaneously considered, age and global brain atrophy are the most important factors in explaining variability in hippocampal volume. These variables were not only important in themselves but also in interaction with gender, education, MMSE, and TIV. The fact that global brain atrophy (i.e., the BV/CSF index) strongly correlated with age indicates that reduced hippocampal volume in cognitively normal individuals seems to be primarily explained by a process of global brain atrophy, presumably age related. This would be true only for the older individuals. The interaction obtained suggests that reduced hippocampal volume in younger individuals could be indicative of either preclinical pathological changes related to a certain neurodegenerative disease or simply premorbid small hippocampal volume.

A previous study also found differences between ADNI controls and a population-based cohort in key demographic and clinical variables (Whitwell et al., 2012). In that study, hippocampal volume was larger in the ADNI controls than in those from the MCSA cohort and these differences were no longer significant after matching the cohorts by age, gender, education, APOE ϵ 4 genotype, and MMSE. To the best of our knowledge, the control groups from AIBL and AddNeuroMed have not been previously compared with population-based cohorts in terms of hippocampal volume. Our results together with recent research (Brodaty et al., 2014; Whitwell et al., 2012) demonstrate that control groups from ADNI, AIBL, and AddNeuroMed may not be representative of the general population.

This study has several strengths: (a) the use of the largest sample to date in a study of this kind (N = 1,958); (b) the inclusion and comparison of the three currently most widely used multicenter cohorts in dementia imaging research (i.e., AddNeuroMed, ADNI, and AIBL); and (c) the interactive evaluation of several demographic and clinical variables associated with hippocampal volume, in contrast to virtually all previous studies frequently investigating these factors in a separate manner.

Some limitations should also be considered. Some variables were missing for some of the cohorts, limiting the consideration of several clinical variables when performing analyses at the whole-sample level. This was addressed by running analyses for each separate cohort including all the available variables. Furthermore, imaging data from different centers with different MRI equipment and sequences were used. This affects only those analyses where the different cohorts were combined or compared to each other, but not those analyses carried out for the separate samples. Moreover, most of the MRI sequences were designed to be comparable with the ADNI protocol. Some factors could still have some influence in the imaging measurements, especially differences in field strength. Nonetheless, excellent agreement between hippocampal volumes measured across different field strengths has been previously demonstrated for FreeSurfer (Briellmann, Syngeniotis, & Jackson, 2001; Whitwell et al., 2012). Other studies have also compared cohorts where MRI data were acquired in different centers, equipment, and field strengths (Hibar et al., 2015; Whitwell et al., 2012). Still, we cannot know how much of the variance in hippocampal volume is due to scanners and protocol differences in this study. Finally, several life-style factors such as smoking and cardiometabolic factors have been previously identified as determinants of hippocampal volume in cognitively normal individuals (Janowitz et al., 2014) but were not considered in this study.

5 | CONCLUSION

This study may have important implications for the use of hippocampal atrophy as a biomarker. The results highlight the large variability in hippocampal volume during the cognitively normal stage. This is important when trying to disentangle disease mechanisms from the effect of several demographic and clinical factors. Another important conclusion is that the samples of AddNeuroMed, ADNI, and AIBL are not representative of the general population. Both conclusions must be taken into account when (a) designing research where a clinical group is recruited from a specialized center and compared with a control group from the general population; (b) designing future clinical trials, which are often based on highly selected populations; (c) translating imaging biomarkers to the general population; and (d) applying the new diagnostic criteria for AD and predementia stages, in which imaging biomarkers are important for increasing certainty about the underlying disease (Albert et al., 2011; McKhann et al., 2011; Sperling et al., 2011). The key factor here is how well knowledge can be translated from clinical settings to the general population, and vice versa. The strategy for recruiting individuals will depend on the study aims and the materials to be used. Regarding hippocampal atrophy are the most important factors to be considered, but gender, education, MMSE, and TIV should also be taken into account.

ACKNOWLEDGMENTS

The authors have no competing financial interests.

The authors thank the Swedish Foundation for Strategic Research (SSF), the Swedish research council (VR), Swedish Brain Power; the Strategic Research Programme in Neuroscience at Karolinska Institutet (StratNeuro); the Strategic Research Programme in Neuroscience at Lund University (MultiPark); European Research Council; Swedish Research Council; the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet as well as between Region Skåne and Lund University; Demensförbundet; Karolinska Institutet Forskningsstiftelser; Sigurd och Elsa Goljes Minne; Stiftelsen för Ålderssjukdomar vid Karolinska Institutet; Gamla Tjänarinnor; and Loo och Hans Ostermans Stiftelse.

Some results presented in this article have been partially published in Neurodegener Dis 2015, 15 (suppl 1): 183, as an abstract of an Oral Communication presented at the 12th International Conference on Alzheimer's & Parkinson's Diseases (ADPD), Nice (France), March 2014, being also awarded with the Junior Faculty Award.

ADDNEUROMED: AddNeuromed is supported by InnoMed (Innovative Medicines in Europe), an Integrated Project funded by the European Union of the Sixth Framework programme priority FP6-2004-LIFESCIHEALTH-5, Life Sciences, Genomics, and Biotechnology for Health.

ADNI: ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and several generous contributions from the following: Alzheimer's Association, Alzheimer's Drug Discovery Foundation, BioClinica Inc., Biogen Idec Inc., Bristol-Myers Squibb Co., Eisai, Inc., Elan Pharmaceuticals, Inc., Eli Lilly and Co., F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc., GE Healthcare, Innogenetics NV, IXICO Ltd., Janssen Alzheimer Immunotherapy Research & Development LLC, Johnson & Johnson Pharmaceutical Research & Development LLC, Medpace Inc., Merck & Co. Inc. Meso Scale Diagnostics LLC, NeuroRx Research, Novartis Pharmaceuticals Corp., Pfizer Inc., Piramal Imaging, Servier, Synarc Inc. and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. Data collection and sharing for in ADNI were funded by the National Institutes of Health (NIH) (Grant U01 AG024904). ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH Grants P30 AG010129 and K01 AG030514.

AIBL: The AIBL Research Group thanks all the participants who took part in the AIBL study and the clinicians who referred participants. The AIBL study (www.AIBL.csiro.au) is a collaboration between CSIRO, Edith Cowan University (ECU), The Florey Institute of Neuroscience and Mental Health (FINMH), National Ageing Research Institute (NARI), and Austin Health. It also involves support from CogState Ltd., Hollywood Private Hospital, and Sir Charles Gairdner Hospital. The study received funding support from CSIRO, the Science and Industry Endowment Fund (www.SIEF.org.au), NHMRC and Dementia Collaborative Research Centres (DCRC), Alzheimer's Australia (AA), Alzheimer's Association, and the McCusker Alzheimer's Research Foundation.

BRC: Data acquisition and analysis were supported by funds from National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health and the NIHR Biomedical Research Unit for Dementia at the South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Kings College London. Co-authors AS and SL were also supported by funds from these institutions.

GENIC: Thanks to Fundación Cajacanarias (Canary Islands, Spain); Servicio de Resonancia Magnética para Investigaciones Biomédicas del SEGAI (University of La Laguna, Spain); Dr Diaz-Flores Varela (Hospital Universitario de Canarias) for his collaboration in clinical inspection of magnetic resonance images; and Dr Antonio Rodríguez for providing access to participants and helpful assistance. Data used in preparation of this article are part of the GENIC database (Group of Neuropsychological Studies of the Canary Islands, University of La Laguna, Spain. Principal investigator: Professor José Barroso). The following collaborators contributed to the GENIC-database but did not participate in analysis or writing of this report (in alphabetic order by family name): Nira Cedrés, Rut Correia, Patricia Díaz, Nerea Figueroa, Iván Galtier, Lisset González, Teodoro González, Zaira González, Cathaysa Hernández, Edith Hernández, Nira Jiménez, Judith López, Antonieta Nieto, María Sabucedo, Elena Sirumal, Marta Suárez, Manuel Urbano, Pedro Velasco,

BioFINDER: The study was supported by the European Research Council, the Swedish Research Council, the Strategic Research Programme in Neuroscience at Lund University (MultiPark), the Crafoord Foundation, the Swedish Brain Foundation, The Swedish Alzheimer foundation, the Torsten Söderberg Foundation at the Royal Swedish Academy of Sciences, and the regional agreement on

⁶⁶⁶ WILEY

medical training and clinical research (ALF) between Region Skåne and Lund University.

PIVUS: PIVUS was supported by AstraZeneca R&D Mölndal and Uppsala University Hospital.

SNAC-K: The Swedish National study on Aging and Care, SNAC (www.snac.org), is financially supported by the Ministry of Health and Social Affairs, Sweden, the participating County Councils and Municipalities, and the Swedish Research Council. We are grateful to the SNAC-K participants and to our colleagues in the SNAC-K group for their collaboration in data collection and management.

REFERENCES

- Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., ... Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers & Dementia*, 7, 270-279.
- Breiman L. (2001). Random forests. Machine Learning, 45, 5-32.
- Briellmann, R. S., Syngeniotis, A., & Jackson, G. D. (2001). Comparison of hippocampal volumetry at 1.5 Tesla and at 3 Tesla. *Epilepsia*, 42, 1021–1024.
- Brodaty, H., Mothakunnel, A., de Vel-Palumbo, M., Ames, D., Ellis, K. A., Reppermund, S., ... Sachdev, P. S. (2014). Influence of population versus convenience sampling on sample characteristics in studies of cognitive aging. *Annals of Epidemiology*, 24, 63–71.
- Crivello, F., Lemaître, H., Dufouil, C., Grassiot, B., Delcroix, N., Tzourio-Mazoyer, N., ... Mazoyer, B. (2010). Effects of ApoE-epsilon4 allele load and age on the rates of grey matter and hippocampal volumes loss in a longitudinal cohort of 1186 healthy elderly persons. *Neuroimage*, 53, 1064–1069.
- Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., ... Killiany, R. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *Neuroimage*, 31, 968–980.
- Ellis, K., Bush, Al., Darby, D., De Fazio, D., Foster, J., Hudson, P., ... Ames, D. (2009). The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. *International Psychogeriatrics*, 21, 672–687.
- Ellis, K. A., Rowe, C. C., Villemagne, V. L., Martins, R. N., Masters, C. L., Salvado, O., ... Ames, D. (2010). Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: Collaboration with the Alzheimer's Disease Neuroimaging Initiative. Alzheimers & Dementia, 6, 291–296.
- Ferencz, B., Laukka, E. J., Lövdén, M., Kalpouzos, G., Keller, L., Graff, C., ... Bäckman, L. (2013). The influence of APOE and TOMM40 polymorphisms on hippocampal volume and episodic memory in old age. *Frontiers in Human Neuroscience*, 7, 198.
- Ferreira, D., Correia, R., Nieto, A., Machado, A., Molina, Y., Barroso, J. (2015). Cognitive decline before the age of 50 can be detected with sensitive cognitive measures. *Psicothema*, 27, 216–222.
- Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., ... Dale, A. M. 2002. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. *Neuron*, 33, 341–355.
- Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. *Nature Reviews: Neurology*, *6*, 67–77.

- Grömping, U. (2007). Estimators of relative importance in linear regression based on variance decomposition. *American Statistics*, 61, 139-147.
- Guo, L.-H., Alexopoulos, P., Wagenpfeil, S., Kurz, A., & Perneczky R. (2013). Brain size and the compensation of Alzheimer's disease symptoms: A longitudinal cohort study. *Alzheimers & Dementia*, 9, 580–586.
- Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., ... Corvin A. (2015). Common genetic variants influence human subcortical brain structures. *Nature*, 520, 224–229.
- Jagust, W. J., Landau, S. M., Shaw, L. M., Trojanowski, J. Q., Koeppe, R. A., Reiman, E. M., ... Mathis, C. A. (2009). Relationships between biomarkers in aging and dementia. *Neurology*, 73, 1193–1199.
- Janowitz, D., Schwahn, C., Borchardt, U., Wittfeld, K., Schulz, A., Barnow, S., ... Grabe, H. J. (2014). Genetic, psychosocial and clinical factors associated with hippocampal volume in the general population. *Translational Psychiatry*, 4, e465.
- Jiang, J., Sachdev, P., Lipnicki, D. M., Zhang, H., Liu, T., Zhu, W., ... Wen, W. (2014). A longitudinal study of brain atrophy over two years in community-dwelling older individuals. *Neuroimage*, 86, 203–211.
- Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. *R News*, *2*, 18–22.
- Lind, L., Fors, N., Hall, J., Marttala, K., & Stenborg, A. (2005). A comparison of three different methods to evaluate endothelium-dependent vasodilation in the elderly: The Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2368–2375.
- Lovestone, S., Francis, P., Kloszewska, I., Mecocci, P., Simmons, A., Soininen, H., ... Ward, M. (2009). AddNeuroMed-the European collaboration for the discovery of novel biomarkers for Alzheimer's disease. *Annals of the New York Academy of Sciences*, 1180, 36–46.
- Magnil, M., Janmarker, L., Gunnarsson, R., & Björkelund, C. (2013). Course, risk factors, and prognostic factors in elderly primary care patients with mild depression: A two-year observational study. *Scandinavian Journal of Primary Health Care*, 31, 20–25.
- McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., ... Phelps, C. H. (2011). The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers & Dementia*, 7, 263– 269.
- Morra, J. H., Tu, Z., Apostolova, L. G., Green, A. E., Avedissian, C., Madsen, S. K., . . . Thompson, P. M. (2009). Automated mapping of hippocampal atrophy in 1-year repeat MRI data from 490 subjects with Alzheimer's disease, mild cognitive impairment, and elderly controls. *Neuroimage*, 45, S3–S15.
- Morris, J. C., Blennow, K., Froelich, L., Nordberg, A., Soininen, H., Waldemar, G., ... Dubois, B. (2014). Harmonized diagnostic criteria for Alzheimer's disease: Recommendations. *Journal of Internal Medicine*, 275, 204–213.
- Muehlboeck, J.-S., Westman, E., & Simmons, A. (2014). TheHiveDB image data management and analysis framework. *Front Neuroinform*, 7, 49.
- Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., ... Beckett, L. (2005). Ways toward an early diagnosis in Alzheimer's disease: The Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers & Dementia, 1, 55–66.
- Nettiksimmons, J., Harvey, D., Brewer, J., Carmichael, O., DeCarli, C., Jack, C. J., ... Beckett, L. (2010). Subtypes based on CSF and MRI markers in normal elderly predict cognitive decline. *Neurobiology of Aging* 31, 1419–1428.

- Noble, K. G., Grieve, S. M., Korgaonkar, M. S., Engelhardt, L. E., Griffith, E. Y., Williams, L. M., & Brickman, A. M. (2012). Hippocampal volume varies with educational attainment across the life-span. *Frontiers in Human Neuroscience* 6, 307.
- Orellana, C., Ferreira, D., Muehlboeck J-S, Mecocci, P., Vellas, B., Tsolaki, M., ... Westman, E. (2016). Measuring global brain atrophy with the brain volume/cerebrospinal fluid index: Normative values, cut-offs and clinical associations. *Neurodegenerative Disease*, 16, 77–86.
- Qiu, C., Zhang, Y., Bronge, L., Herlitz, A., Aspelin, P., Bäckman, L., ... Wahlund, L. O. (2012). Medial temporal lobe is vulnerable to vascular risk factors in men: A population-based study. *European Journal of Neurology*, 19, 876–883.
- Raz, N., Ghisletta, P., Rodrigue, K. M., Kennedy, K. M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. *Neuroimage*, 51, 501–511.
- Shpanskaya, K., Choudhury, K., Hostage, C. J., Murphy, K., Petrella, J., & Doraiswamy, P. (2014). Educational attainment and hippocampal atrophy in the Alzheimer's disease neuroimaging initiative cohort. *Journal of Neuroradiology*, 41, 350–357.
- Sperling, R., Aisen, P., Beckett, L., Bennett, D., Craft, S., Fagan, A., ... Phelps, C. (2011). Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. *Alzheimers & Dementia*, 7, 280–292.
- Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 2015-2028.
- Striepens, N., Scheef, L., Wind, A., Meiberth, D., Popp, J., Spottke, A., ... Jessen, F. (2011). Interaction effects of subjective memory impairment and ApoE4 genotype on episodic memory and hippocampal volume. *Psychological Medicine*, 41, 1997–2006.
- Svanborg, P., & Ekselius, L. (2003). Self-assessment of DSM-IV criteria for major depression in psychiatric out- and inpatients. Nordic Journal of Psychiatry, 57, 291–296.
- Voevodskaya, O., Simmons, A., Nordenskjöld, R., Kullberg, J., Ahlström, H., Lind, L., ... Westman, E. (2014). The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer's disease. *Frontiers in Aging Neuroscience*, *6*, 264.
- Walhovd, K. B., Fjell, A. M., & Espeseth, T. (2014). Cognitive decline and brain pathology in aging-need for a dimensional, lifespan and systems vulnerability view. *Scandinavian Journal of Psychology*, 55, 244– 254.
- Wancata, J., Alexandrowicz, R., Marquart, B., Weiss, M., & Friedrich, F. (2006). The criterion validity of the geriatric depression scale: A systematic review. Acta Psychiatrica Scandinavica, 114, 398–410.
- Wang, R., Fratiglioni, L., Laveskog, A., Kalpouzos, G., Ehrenkrona, C. H., Zhang, Y., ... Qiu, C. (2014). Do cardiovascular risk factors explain

the link between white matter hyperintensities and brain volumes in old age? A population-based study. *European Journal of Neurology*, 21, 1076–1082.

- Whitwell, J. L. (2010). The protective role of brain size in Alzheimer's disease. Expert Review of Neurotherapeutics, 10, 1799-1801.
- Whitwell, J. L., Wiste, H. J., Weigand, S. D., Rocca, W. A., Knopman, D. S., Roberts, R. O., ... Jack, C. R. (2012). Comparison of imaging biomarkers in the Alzheimer Disease Neuroimaging Initiative and the Mayo Clinic Study of Aging. Archives of Neurology, 69, 614–622.
- Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., ... Petersen, R. C. (2004). Mild cognitive impairment-beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. *Journal of Internal Medicine*, 256, 240–246.
- Yamaguchi, S., Meguro, K., Shimada, M., Ishizaki, J., Yamadori, A., & Sekita, Y. (2002). Five-year retrospective changes in hippocampal atrophy and cognitive screening test performances in very mild Alzheimer's disease: The Tajiri Project. *Neuroradiology*, 44, 43–48.
- Yuefeng, L., Jinchuan, Y., Dongqing, W., Meifang, S., Yan, Z., Xiaolan, Z., ... Liang, Z. (2014). Magnetic resonance study of the structure and function of the hippocampus and amygdala in patients with depression. *Chinese Medical Journal*, 127, 3610–3615.
- Zhang, Y., Qiu, C., Lindberg, O., Bronge, L., Aspelin, P., Bäckman, L., ... Wahlund, L. O. (2010). Acceleration of hippocampal atrophy in a non-demented elderly population: The SNAC-K study. *International Psychogeriatrics*, 22, 14–25.
- Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67, 361–370.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

Supplementary Table 1 Methods for collection and analysis of CSF and MRI data

Supplementary Table 2 Description of statistical analyses

How to cite this article: Ferreira D, Hansson O, Barroso J, et al. The interactive effect of demographic and clinical factors on hippocampal volume: A multicohort study on 1958 cognitively normal individuals. *Hippocampus*. 2017;27:653–667. https:// doi.org/10.1002/hipo.22721